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Abstract: The role of quantum mechanical nuclear motions in enzymatic reactions is examined by realistic simulations
that take into account the fluctuations of an entire enzyme-substrate complex. This is done by using the quantized
classical path (QCP) approach which is based on Feynman’s path integral formulation. The calculations evaluate
the quantum mechanical activation free energy and deuterium isotope effect for the proton transfer step in the catalytic
reaction of carbonic anhydrase. The calculated and observed isotope effects are in very good agreement, thus
demonstrating the potential of our approach in extracting mechanistic information. Furthermore, the value of the
calculated quantum mechanical rate constant is in a good agreement with the corresponding observed value. This
is significant since the evaluation of the ratio between the quantum mechanical rate constants of the reaction in the
protein and in aqueous solution does not involve any adjustable parameter. The reliability of our calculations is
based on the use of the empirical valence bond (EVB) method. This method does not try to represent the potential
surfaces of the reacting atoms by a first principle approach (this is easily done by fitting the EVB surface to
experimental and theoretical results) but rather evaluates the effect of moving these atoms from solution to the
enzyme active site. The possible catalytic advantage of quantum mechanical nuclear motions is examined by comparing
these effects in the enzyme and in a reference solution reaction. It is found that while quantum mechanical corrections
to activation free energies of enzymatic reactions can be quite large they are not drastically different than the
corresponding corrections in solution. Apparently the largest catalytic effects are due to reduction in the reorganization
energy and∆G0 by the electrostatic effects of the preorganized environment of the protein active site. Nevertheless,
small but non-negligible catalytic contributions can be associated with quantum mechanical effects.

Introduction

Many enzymatic reactions and other fundamental biological
processes involve transfer of protons or hydrides. Since these
transferred ions are very light, it is reasonable to expect that
their motion involves significant quantum mechanical effects.
In fact, the existence of tunneling effects has been implicated
in several enzymatic reactions (e.g., refs 1 and 2 ). Understand-
ing the quantum mechanical nature of light-atom motion is
crucial for a more complete description of enzyme catalysis. In
particular, it is interesting to know whether the enzyme active
site can “catalyze” reactions by enhancing quantum mechanical
tunneling and other quantum mechanical effects. In exploring
this issue it is important to find ways to deduce the effective
height and width of the reaction barrier in the actual enzyme
active site. It is also important to be able to examine the effect
of enzyme fluctuations on the reaction barrier and on the
corresponding quantum mechanical corrections of the barrier.
While structural, kinetic, and biochemical information are

crucial for progress in this direction, it is also essential to find
some quantitative way for calculating quantum mechanical rate
constants in enzyme active sites. Such an approach should be
important not only in trying to explore the possible existence
of quantum mechanical catalytic effects but also, perhaps more
importantly, in allowing one to correlate the observed isotope
effect with the mechanism of action of the given enzyme.
Computer simulation approaches can provide, in principle,

the rate constants of enzymatic reactions.3 However, obtaining

reliable quantum mechanical rate constants in condensed phases
in general and in enzyme active sites in particular is a major
challenge. Significant progress has been made in addressing
the related problem of electron transfer (ET) reactions in solution
and proteins.4-9 However, proton transfer (PT) and hydride
transfer (HT) reactions present a greater challenge since the
coupling between the reactant and product electronic states is
very large. In this limit, which is referred to as theadiabatic
limit, one cannot exploit powerful tricks (e.g., the dispersed
polaron approach4 or the basically identical spin boson ap-
proach6,8), which are applicable in the weak coupling (diabatic)
limit. Nevertheless, significant effort has been devoted to the
search for effective methods for evaluation of quantum me-
chanical rate constants for adiabatic reactions in the condensed
phase.10-18 These studies include the work of ref 14b which
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provided what is to the best of our knowledge the first simulation
of proton transfer reaction in solution and evaluated the
corresponding activation free energy using a path integral
formulation.
Recently we proposed a practical approach to calculate

quantum mechanical rate constants.14,15 This method, referred
to as the quantized classical path (QCP) method, utilizes classical
trajectories to obtain the quantum mechanical rate constant
through a practical yet reliable approximation of the path integral
centroid formulation.17,18 The QCP method has been verified
in studies of exactly solvable model systems15 and was also
used with the empirical valence bond (EVB) potential surfaces
in studies of HT and PT in solutions.14b,15,16 This method was
also used in a preliminary computer simulation of an HT
reaction in a protein.14a Similarly, the original centroid method17,18

with the same type of EVB potential surfaces has also been
used in studies of PT reactions in solution.12 Both approaches
provided encouraging results (see below), but their powerful
potential has not been exploited in systematic simulations of
enzymatic reactions. In this work, we employ the QCP method
to evaluate the isotope effect on the proton-transfer step in the
catalytic reaction of carbonic anhydrase.

Simulation Methods

The starting point for the QCP approach is the observation
that the quantum mechanical rate constant can be usually
approximated by17,18

WhenF is the transmission factor,kB is the Boltzmann constant,
T is the temperature,h is the Planck constant, andâ ) 1/kBT.
∆gq

q is the quantum mechanical activation free energy (q
designates here “quantum mechanical”). The remarkable point
about eq 1 is that the preexponential factor is approximately
the same as in the classical rate constants. Thus the main
quantum mechanical effects are associated with the probability
factor exp(-â∆gq

q). Thus the task of evaluating the quantum
mechanical rate constant is reduced to the evaluation of the
quantum mechanical probability of being at the transition state.
This probability factor can be evaluated by using Feynman’s
path integral approach where each quantum particle is repre-
sented by a “ring” ofp quasiparticles, which are subjected to
the effective “quantum mechanical” potential.

where∆xk ) xk+1 - xk, xp+1 ) x1, Ω ) p/pâ,M is the mass of
the particle, andU is the actual potential surface of the system
(this potential is used in classical simulations). The quantum
mechanical partition function can then be obtained by running
classical trajectories where the quasiparticles experience the
potentialUq. As pointed out by Gillan17 and by Voth and co-
workers,18 it is possible to find the probability of being at
different points along the reaction coordinate by evaluating the
probability distribution for the center of mass of the quasiparticle
ring, which is also referred to as the “centroid” of the system.
The use of quasiparticles is a computational device whose
relationship to quantum effects is not so straightforward (except,

of course, that it works). Nevertheless, we provide in Figure 1
a qualitative rationalization for the fact that the path integral
approach is able to evaluate quantum mechanical effects. The
figure compares the classical (Figure 1a) and quantized (Figure
1b) description of a particle in a double well potential surface.
As illustrated by the figure, a classical particle with a total
energy E< Uq cannot pass from the left to the right side of the
potential since its energy is lower than the value of the potential
at the transition state,xq. On the other hand, a quantum
mechanical particle can penetrate or “tunnel” through the barrier
since each of the quasiparticles only experiences the potential
U(xk)/p rather thanU(x0). (Note, however, that whenp increases
we have on average less energy per particle). The only reason
the tunneling does not occur so readily is the restoring force of
theMΩ2∆xk

2/2p term that “connects” the quasiparticles to each
other. This term keeps the quasiparticles close to each other at
high temperature (smallâ), and whenM is large, the system
behaves classically. However, at low temperatures and when
M is small, the quasiparticles can spread, and some of them
can penetrate the barrier. The quantum mechanical probability
that the system will reachxq is given by the chance that the
center of mass of the quasiparticle ring will be at this point.
Similarly the centroid path integral approach reproduces the
quantum mechanical effect of the zero point energy. That is,
in the classical limit at low temperature the particle will relax
to x0. On the other hand, in the quantum limit the systems will
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(18) (a) Voth, G. A.; Chandler, D.; Miller, W. H.J. Chem Phys.1989,

91, 7749. (b) Voth, G. A.J. Phys. Chem. 1993, 97, 8365.
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Figure 1. Schematic diagrams of the behavior of classical (a) and
quantized (b) particles on a double-well potential surface. In order to
make the discussion simple we only consider the contribution to the
probability distribution from energies that are smaller than the barrier
height, F(x) ) ∫0EmaxP(x,E) exp(-âE)dE with Emax < U(xq), where
P(x,E) is the probability to be at the givenxwith the designated energy
(i.e., the probability obtained by running a trajectory with the given
E). This probability distribution is represented by a shaded area. The
upper figure (a) represents the classical particle by a single sphere.
This particle has zero probability to be atxq for E < U(xq). The lower
figure (b) describes the quantum mechanical particle by a ring of beads.
When the particle is at the transition state region, the beads can be at
points with energy lower than U(xq), and this allows the particle to be
at xq and to tunnel through the barrier (in this case we have nonzero
probability to be atxq). When the particle is at the bottom of the
potential well the beads can see points with potential higher thanU(x0).
This dispersion is reflected by the zero point energy.
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always have nonzero potential energy when the centroid position
is at x0, since some of the quasiparticles will be atxk * x0.
Thus, at low temperature the beads can be at points whose
potential energy is larger thanU(x0) and will have larger average
potential energy than the corresponding classical particle. This
dispersion is reflected by the zero point energy.
Actual calculations of centroid probabilities in the condensed

phase reactions are very challenging and may involve major
convergence problems. The QCP approach offers an effective
and rather simple way for evaluating this probability without
significantly changing the simulation program. This is done
by propagating classical trajectories on the classical potential
surface of the reacting system and using the positions of the
atom of the system to generate the centroid position for the
quantum mechanical partition function. This treatment is based
on the finding that the quantum mechanical partition function
can be expressed as15,19

wherexj is the centroid position,〈〉fp designates an average over
the free particle quantum mechanical distribution obtained with
the implicit constraint thatxj coincides with the current position
of the corresponding classical particle, and〈〉U designates an
average over the potentialU. Using eq 3 we can obtain the
quantum mechanical free energy surface by evaluating the
corresponding probability by the same combined free energy
perturbation umbrella-sampling approach that has been repeat-
edly applied in our classical simulations (see ref 3) and also in
our quantum mechanical simulations (e.g. ref 14b), but now
we use the double average of eq 3, rather than an average over
a regular classical potential. The actual equations used in our
free energy perturbation (FEP) umbrella sampling calculations
are given elsewhere,15 but the main point of the QCP is that
one can evaluate the quantum mechanical free energy function
by a centroid approach which is constrained to move on the
classical potential. This provides stable and relatively fast
converging results which have been shown to be quite accurate
in studies of well defined test potentials (where the exact
quantum mechanical results are known15).
Equation 3 provides what is formally the rigorous centroid

path integral result, although the simple form of this equation
led some to believe that this is an approximated expression such
as the effective potential of Feynman and Hibbs.21 It should
also be noted that the main idea behind our approach is not the
derivation of eq 3 but the use of classical MD simulation over
xp to obtain the quantum free energy by performing fp average.
This practical idea whose simplicity might be confused with
triviality provides a practical way for efficient calculations of
quantum mechanical activation free energies using standard
simulation programs (e.g., ENZYMIX33) without changes except
the addition of a single subroutine.
With theZq of eq 3 we can calculate the activation free energy

of eq 1 using

wherexja is the position of the minimum of thegq curve. This
provides a direct way for estimating quantum mechanical rate
constants in solution and proteins.
The reliability of the QCP approach and related path integral

calculations of the proton transfer reactions in solution have
been established to a reasonable level of confidence (see footnote
22).

Simulating the Proton Transfer Step in the Reaction of
Carbonic Anhydrase

In order to demonstrate and test our approach we chose the
catalytic reaction of carbonic anhydrase (CA). This enzyme
catalyzes the reaction

Extensive biochemical (e.g., refs 23-25), structural (e.g. refs
25-27), and theoretical studies (e.g., refs 28-31) help to clarify
the reaction mechanism. It is very likely that the rate limiting
step in the “hydration” reaction is a proton transfer from a zinc
bound water to His 64 through one or more water molecules.23

According to our pKa calculations (which are quite reliable as
is demonstrated elsewhere, e.g., ref 33) the highest barrier in
this process involves a PT between the zinc bound water (W1)
to its neighboring water (W2) molecule (∆pKa∼ 7), while the
PT between the second water and His 64 is exothermic (∆pKa

∼ -6). This situation is illustrated in Figure 3 of ref 28a. The
actual mechanism might involve a stepwise process of PT
between the two water molecules (W1 and W2) and then PT
from W2 to His 64 or a more concerted process (see related
proposal for the back-reaction in ref 23b). Since the present
work does not try to determine the ultimate mechanism of CA
we focus on the stepwise mechanism (see more discussion
below) and consider the step with the highest barrier, which can
be written formally as

Obviously as always we treat this in the presence of all its zinc
and all the rest of the enzyme and solvent molecules. Steiner
et al.24 have observed an isotope effect of 3.8 onkcat of human
carbonic anhydrase II. This provides further support to the idea
that the rate limiting step is a PT reaction. Here we start with
the crystal structure of CA and examine the performance of

(19) Equation 3 is closely related to an expression developed by Doll
and Myers.20 However the elegant proposal of ref 20 was developed for
ground state partition functions and not for calculations of rate constants
by centroid approaches. Furthermore, our approach and the work described
in ref 14b have introduced the use of FEP/umbrella sampling methods to
path integral centroid calculations of rate constants. We consider this to
be quite useful and like to point out that many works in this field developed
effective simulation approaches for implementation of the original idea of
Feynman, rather than invented a new quantum mechanical concept.

(20) Doll, J. D.; Myers, L. E.J. Chem. Phys.1979, 71, 2880.
(21) (a) Feynman, R. P.; Hibbs, A. R.Quantum Mechanics and Path

Integrals; McGraw-Hill: New York, 1965. (b)Feynman, R. P.Statistical
Mechanics; Benjamin: New York, 1972.

(22) The use of the QCP approach and the EVB potential surfaces3,32

has reproduced the experimentally observed dependence of isotope effects
on pKa.15 This method also reproduced the quantum mechanical temperature
dependence of well defined test cases where the corresponding exact results
are known.15 Furthermore, related centroid studies of Voth and co-workers12

that used the EVB potential surfaces were applied successfully to studies
of PT reactions in solutions. As to the EVB potential itself; it has been
used extensively in studies of proton transfer reactions in solution and
proteins and reproduces the observed rate constants,32 with the implicit
assumption that the quantum mechanical corrections are similar in the active
site and in the corresponding reference solvent case. Since some readers
might be concerned about the “empirical” nature of the EVB approach, it
is important to note recent demonstrations40 that the EVB potential surface
correctly reproduces the corresponding ab initio surfaces.
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K. A.; Silverman, D. N.J. Biol. Chem.1994, 269, 17988

(24) Steiner, H.; Jonsoon, B. H.; Lindskog, S.Eur. J. Biochem. 1975,
59, 253.

Zq(xj) ) Zcl(xj) 〈〈 exp{-(â/p) ∑
k

U(xk) - U(xj)}〉fp〉U (3)

gq(xj) ) â-1 ln Zq(xj)

∆gq
q ) gq(xj

q) - gq(xja) (4)

CO2 + H2Oh HCO3
- + H+ (5)

(2H2O)
active siteh (OH- + H3O

+)active site (6)
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our approaches by simulating the reaction and calculating the
corresponding isotope effect.
In order to model the energetics of our enzymatic reaction,

we used the empirical valence bond (EVB) approach. This
powerful approach which is described in detail elsewhere (e.g.
refs 3 and 32 ) might look to some as too simple to be reliable.
We find it useful to point out that the close relationship between
the EVB and the corresponding ab initio surfaces has been
established elsewhere (e.g., ref 40). Some might still wonder
how we can describe an enzyme by such an approach when
other methods have difficulties in obtaining reliable potential
surfaces for triatomic molecules. However, the EVB does not
attempt to evaluate potential surfaces of reacting fragments but
instead fits them to known theoretical or experimental results.
Then the method focuses on the real issue, which is the effect
of changing environment on the quantum mechanical region.
Perhaps more convincing for the skeptics and critics could be
the fact that this approach has now been adopted by several
research groups (e.g., refs 12 and 45-47).
The EVB treatment of the PT reaction of eq 6 included in

the quantum mechanical active space the two reacting water
molecules, which were represented by two resonance structures32

while treating the rest of the system classically. It has been
shown before that other valence bond structures corresponding
to the higher energy configurations could be effectively
incorporated into these structures.3 The diabatic potential
function of the ith structure was expressed in the following
form28

whereb andθ designate bond length and bond angle, respec-
tively, whileSandsdesignate solute and solvent, respectively.
Here, the first term∆Mj

(i) denotes the Morse potential corre-
sponding to thejth bond in theith valence bond structure, the
second term describes the bond angle bending interactions. The
factorêj

(i) in the second term is a coupling between bonds that
are being broken or formed and those angles depending on those
bonds. The third and fourth terms represent the solute-solute
and solute-solvent nonbonded interactions, while the fifth term
represents the solvent-solvent interaction potentials. TheR(i)

term accounts for energy difference betweenψ1 andψ2 with
the reacting fragments at an infinite separation in the gas phase.3

These parameters were adjusted so that they could reproduce
the solvation free energies of the reacting species, i.e., H2O,
H3O+, and OH-. Molecular dynamics (MD) simulations were

performed by a version of the program ENZYMIX33 which
included the QCP option. The reaction regions, i.e., the two
water molecules, were described by a closed string of 20 beads
for each atom, and the surrounding environments were treated
classically. The parameters of the reacting species, i.e., H2O,
H3O+, and OH- , were those used in the standard EVB library
of ENZYMIX. The Zn(II) metal at the active site was treated
with the octahedral 1+ 6 center model.34 The crystal structure
of carbonic anhydrase I26 was equilibrated for 20 ps and then
used as the starting configuration for the simulations. The EVB
region was completed to a 16 Å sphere of SCAAS water
molecules,33 surrounded by a 18 Å spherical grid of Langevin
dipoles. Solvation outside the Langevin grid was treated by a
continuum model.33 Long range electrostatic interactions were
treated by the local reaction field (LRF) method.35 All
calculations were done at a temperature of 300 K and a step-
size of 2 fs. A typical trajectory time for the simulation of each
mapping state was around 8 ps, and the total trajectory time
for one complete run was about 80 ps. The final results were
the average of those of forward and backward mapping. The
calculations were performed on IBM RISC/6000 3BT and 590.
The convergence and stability of our approach is discussed in
ref 36.
In addition to simulating the reaction in the protein active

site we also simulate a reference reaction of the two water
molecules of eq 6 with a zinc ion in a solvent cage. To clarify
a common confusion it is important to realize that this reference
reaction isnot the actual noncatalyzed reaction in water. Our
reference reaction is (and always has been) a hypothetical
reaction where the same mechanism assumed for the enzyme
is considered with the active site replaced by a solvent cage.
The thermodynamic cycle that compares the enzymatic reaction
and the corresponding reference reaction allows us to eliminate
the somewhat trivial and unnecessary confusing issue of the
relationship between concentration to the probability of being
in the solvent cage (see problem 5.1 in ref 3). Moreover it
provides a unique way of defining catalytic effects without
resorting to the concept of “effective concentration.” Further-
more since we can almost always use experimental thermody-
namic information (e.g., pKas in water) to determine the
“corners” of the free energy surface in the reference solution
reaction (see refs 3 and 28), we have a unique way of calibrating
the potential surface in the enzyme using experimental observa-
tions. Thus our calculations of the catalytic effects are reduced
to evaluations of the difference between the same reaction in
enzyme and in solution, and we basically avoid the enormous
challenge of calculating accurately bond energies and other
contributions by a first principle quantum mechanics approach;
the quantum mechanical energy of the reacting fragments is
canceled out, and we can focus on reliable calculations of
environmental effects.
All the details about the rather unique experimental informa-

(25) Krebs, J. F.; Ippolito, J. A.; Christianson, D. W.; Fierke, C. A.J.
Biol. Chem.1993, 268, 27458.

(26) Liljas, A.; Kannan, K. K.; Bergste´n, P.-C.; Waara, I.; Fidborg, K.;
Strandberg, B.; Carlbom, U.; Ja¨rup, L.; Lövgren, S.; Petef, M.Nature New
Biol. 1972, 235, 131.

(27) Kannan, K. K.; Ramanadham, M.; Jones, T. A.Ann. N. Y. Acad.
Sci. 1984, 429, 49.

(28) (a) Åqvist, A.; Warshel, A.J. Mol. Biol. 1992, 224, 7. (b) Åqvist,
A.; Fothergill, M; Warshel, A.J. Am. Chem. Soc.1993, 115, 631.

(29) Liang, J. Y.; Lipscomb, W. N.Biochemistry1987, 26, 5293.
(30) Jacob, O.; Cardenas, R.; Tapia, O.J. Am. Chem Soc. 1990, 112,

8692.
(31) Merz, K. M. J.Am. Chem. Soc. 1991, 113, 406.
(32) Åqvist, A.; Warshel, A.Chem. ReV. 1993, 93, 2523-2544.

(33) Lee, F. S.; Chu, Z. T.; Warshel, A.J. Comput. Chem.1993, 14,
161.

(34) Åqvist, A.; Warshel, A.J. Am. Chem. Soc.1990, 112, 2860.
(35) Lee, F. S.; Warshel, A.J. Chem. Phys, 1992, 97, 3100.
(36) The reliability and convergence of FEP calculation in proteins is a

rather complex issue. Usual convergence tests, such as forward and
backward integration, are not always informative or even appropriate as
far as overall accuracy is concerned. An important point to remember in
the error analysis is to be consistent with the methodology used to
parametrize the model. We and others have invested considerable effort
addressing these issues (e.g. refs 33 and 35) and concluded that a useful
estimate of the actual error range can be obtained by running a set of
simulations with different initial conditions. By this definition we have an
error range of about 2 kcal/mol in the absolute value of the activation free
energy. The error in the activation free energy difference between D and H
transfer reactions is around 0.20 kcal/mol which corresponds to an error
range of about(1.0 in the corresponding isotope effect.

ψ1 ) [H2O H2O]

ψ2 ) [ÃΗ- H3O
+] (7)

εcl
i ) ∑

j

∆Mj
(i)(bj

(i)) + ∑
j

êj
(i)Kj

(i)(θj - θ0,j
(i))2 + VSS

(i) + VSs
(i) +

Vs + R(i) (8)

11748 J. Am. Chem. Soc., Vol. 118, No. 47, 1996 Hwang and Warshel



tion used to describe the reference reaction has been given
elsewhere (e.g., refs 3 and 28 and even as early as in ref 41).
The experimental information for the reference reaction in the
presence of a zinc ion is analyzed in ref 28.
Figure 2 presents snapshots of the simulated system in the

reactant, transition state, and product regions. The figure
emphasizes the quasiparticles that correspond to each atom and
illustrates their spread during the simulation. The centroids of
the quasiparticles were used to determine the quantum mechan-

ical free energy functions through the use of eq 4. The
corresponding free energy functions for proton transfer (PT)
and deuterium transfer (DT) in the first step of our reaction are

(37) Some readers might confuse the many force field parameters of eq
8 with empirical parameters that allow one to adjust the calculated rate
constant to any desirable value. However, while our approach refines
parameters by reproducing properties of molecules in solution (as is done
by all current approaches), it does not allow any of these parameters to
change when calculating the difference between the energy of the given
reaction in the protein active site and in water.

Figure 2. Snapshots of our simulations of the proton transfer reaction in carbonic anhydrase, showing three different states of the reaction: the
reactant state, the transition state, and the product state. The figure shows the quantum beads of the reacting water molecules (dotted yellow
spheres) and the surrounding protein and solvent regions (blue space-filling spheres).
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shown in Figure 3. Using the difference between the activation
barriers for PT and DT in the protein active site we obtained
an isotope effect of 3.9( 1.0, which is in good agreement with
the observed isotope effect24 of 3.8. The convergence of the
calculations is discussed in footnote 36. Since it is not entirely
clear that the rate limiting step involves the PT of eq 6, we
also simulated the second step in the “hydration” of the reaction
that involves the nucleophilic attack of the OH- ion on the CO2
molecule. This simulation produced a smaller isotope effect
(kH/kD ≈ 1.48). Thus we can conclude, based on comparing
the calculated and observed isotope effects, that the hydration
step is probably not rate limiting. It is still possible that the
rate limiting step involves a PT from the H3O+ ion to His 64.
However, this step has a negative∆G0 (our protein dipoles
Langevin dipoles PDLP unpublished calculation gave pKas of
∼1 and∼7, respectively, for the H3O+ and His 64 in the
presence of the Zn2+, the OH-, and the rest of the protein), and
the corresponding isotope effect is expected to be larger than
that observed experimentally. It is also possible that the actual
mechanism involves a concerted process with a simultaneous
transfer of a proton from W1 to W2 and a transfer from W2 to
His 64 (see the free energy map Figure 3 of ref 28a). Our
previous experiences with modeling activation barriers in
solution indicated that the concerted path usually has a similar
barrier to that of the stepwise path. We also note qualitative
arguments that support the stepwise mechanism at the end of
ref 23d. Furthermore, our experience indicated that such a
Grotthuss-type mechanism (where the participants have different
pKas and the path is not fully concerted) will have similar isotope
effect to that of the stepwise mechanism. Thus, at the present
stage, we do not think that calculations of the isotope effect of
the concerted mechanism (which are clearly feasible with our
approach) will allow one to discriminate between the stepwise
and concerted mechanism. In our opinion the best way to obtain
more conclusive mechanistic information is to use simulations
of the type described here in studies of mutation experiments
where His 64 is replaced by other bases (see Figure 2 of ref
23d). Hopefully the calculated results of one of the two feasible
mechanisms will not agree with the observed trend. Such a
project is in progress in our group but it is not the subject of
the present work. We basically view our study as a demonstra-
tion of the general potential of simulation methods in extracting
mechanistic information from experimentally observed isotope
effects rather than a specific elucidation of the mechanism of

CA. Furthermore, we consider the examination of the quantum
mechanical nuclear effects in the reaction of eq 6 as a reasonable
test case for the importance of such effects in enzyme catalysis
which is the primary subject of this work.
The present approach evaluated not only the isotope effect

but also the actual quantum mechanical rate constant for the
rate determining step in the catalytic reaction of CA. The rate
constant obtained from eq 1 is 3.4× 105 s-1 with an error range
of a factor of 10. This compares reasonably well to the observed
value23 of kcat (2 × 105 s-1 in isosyme I and 1.4× 106 s-1 in
isosyme II). What is much more significant, however, is the
fact that the calculated rate enhancement by the enzyme is about
108 relative to the reference reaction in water discussed above,
and that this reproduces the corresponding observed effect to
within a factor of 10. The same order of magnitude of catalysis
is expected for the more concerted pathway considering our
repeated experience that the catalytic effects for the concerted
mechanism is strongly correlated with that of the stepwise
mechanism.3,42 Even if our quantitative success is coincidental
it is encouraging to see that the enormous catalytic effect of
the enzyme (around 11 kcal/mol) is reproduced without using
adjustable parameters.37 This ability to reproduce the overall
observed effect of the enzyme, without first assuming it, allows
us to probe questions which are difficult to determine by direct
experiments. In particular, molecular modeling may start to
be used in addressing the long standing question about the
possible catalytic role of quantum mechanical nuclear effects.
In order to examine this possibility it is essential to compare
the enzymatic reaction to a reference reaction in solution. This
is done in Figure 4 where the activation barrier,∆gq, of the
reaction in the enzyme and of the reference reaction in the water
cage is correlated with the corresponding reaction free energy
∆G0. These linear free energy relationships (LFER) are
obtained by changing the gas phase proton affinity of the proton
donor in a parametric way (to simulate the effect of different
metals). This analysis (see ref 38 for a related study) allows
us to compare the rates in the enzyme and in solution for the
same∆G0, thus separating the electrostatic effect of changing
the pKa of the proton donor and changing the∆G0 from other
catalytic effects. As seen from Figure 4 we have, for the same
∆G0 (or∆pKa), much smaller classical activation barrier in the
enzyme active site than in the reference solvent cage. This effect
is due to a major electrostatic effect; the reduction of the so-
called “solvent reorganization energy” by the enzyme. That
is, one can express the classical activation barrier by the
modified Marcus relationship of Warshel and co-workers (see
for example refs 3, 18 and 38)

whereλ is the reorganization energy. When, for example,∆G0

≈ 0 we have∆gq ) λ/4 - H12 and the smallerλ the smaller is
∆gq. Enzymes with their preoriented polar environments lead
to smallλ’s and reduce the corresponding∆gq’s (see refs 3, 38
for discussion and ref 44 for the original proposal of preoriented
dipoles). It is important to note that recent attempts to fit
enzymatic reaction rate to Marcus formula (e.g., refs 23c and

(38) Warshel, A.; Hwang, J.-K.; Åqvist,J. Faraday Discussion1992,
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Figure 3. The free energy profile of PT and DT reactions in carbonic
anhydrase. The classical result is shown in gray line. The quantum
mechanical result involving proton transfer is in thick black line, while
that of deuterium transfer is in thin black line.

∆gq ≈ (∆G0 + λ)2

4λ
- H12 +

H12
2

(λ + ∆G0)
(9)
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43) used the original Marcus equation which corresponds to
the case whenH12 f 0. This equation does not give the correct
absolute value of∆gq’s for adiabatic reactions (e.g., PT and
other bond-breaking-bond-making reactions), and the reorga-
nization energies deduced are underestimated (see the analysis
in ref 16). At any rate, our consistent evaluation ofλ from
first principle simulations is around 24 and 60 kcal/mol for the
reaction in the enzyme and the reference reaction, respectively.
Thus our calculations reproduce the reduction in reorganization
energy and the corresponding catalytic effect.
While the classical effects that reduced∆gq were studied and

discussed before (e.g., refs 3, 38 and 44), the calculations
presented in Figure 4 point out toward a new and interesting
quantum mechanical effect. That is, when we compare the
enzyme and solution reactions for the same∆G0, it is apparent
that the quantummechanical corrections are larger in the enzyme
than in solution. It is tempting to attribute this effect to the
reduction ofλ that is associated with a reduction in the amplitude
of the enzyme fluctuations. However, the analytical dependence
of the quantum mechanical activation barrier in simple model
potentials (e.g., ref 39) does not support such a proposal, and
studies with more realistic model potentials are needed in order
to see how the change in the reorganization energy should be
reflected in the quantum mechanical rate constant. It is also
possible that the enzyme active site increases the effective

ground state frequency relative to the corresponding value in
the reference reaction in solution and thus increases the zero
point energy and reduces the barrier. Regardless of the exact
reason for the calculated effect (which will be the subject of
further studies) it seems to us that this effect does not reflect
numerical artifacts. Thus we believe that while the quantum
mechanical contribution to the difference between the activation
barrier in the enzyme and in solution is not very large, some
difference does exist.

Concluding Remarks

This work examines the potential use of simulation methods
in exploring quantum mechanical effects in enzymatic reactions.
It is demonstrated that the QCP approach can provide reasonable
estimates of quantum mechanical rate constants for fluctuating
enzyme-substrate complexes. This allows one to progress
beyond classical transition rate theory and to explore the role
of nuclear tunneling and zero point energy in modifying the
classical rate constants. The fact that our calculations reproduce
the observed rate constant without using adjustable parameters
(in comparing the reaction in the enzyme to the corresponding
reaction in aqueous solution) indicates that the simulations can
be quite useful in elucidating mechanistic issues. That is, the
simulations can be used in estimating the rate constant and
isotope effects for different assumed reaction mechanisms. This
should allow one to discriminate between different mechanistic
options. For example, the fact that our calculated isotope effect
is in excellent agreement with the corresponding observed values
supports our assumed mechanism. The same method should
be quite useful in other cases including the extraction of
mechanistic information of solvent isotope effects. Using the
QCP method in comparative studies of reactions in the enzyme
active sites and in the corresponding solvent cage allows us to
explore the role of quantum mechanical nuclear effects in
enzyme catalysis. It is found that quantum mechanical contri-
butions can lead to small but non-negligible catalytic effects. It
is possible that this effect can be enhanced at low temperatures
and although such an effect is not directly relevant to physi-
ological processes, it might help in more fundamental under-
standing of enzymatic reactions.
Although quantum mechanical effects are important it should

be pointed out that classical calculations are very useful for
studies of enzyme catalysis. That is, as shown above, although
the quantum corrections can be quite large, their magnitude is
similar in enzymes and the corresponding reference reactions
in solution. Since enzyme catalysis is determined by the
differencebetween the activation barrier in the enzyme and in
solution,∆genzyme

q - ∆gq
water, the quantum correction is can-

celed out to a large extent, and the corresponding classical result
provides a very useful estimate.
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Figure 4. The dependence of the quantum (0, ~) and classical (.],
[) ∆gq on∆G0 for PT and DT in the active site of carbonic anhydrase
and in a solvent cage. In order to focus on the effect of the
reorganization of the solvent we included the Zn2+ ion in the solvent
cage in addition to the two reacting water molecules (our regular
reference reaction does not include the Zn2+ in the reference reaction).
This procedure is justified since we are interested in quantum
mechanical catalytic effects for the hypothetical case where∆G0 is
the same in the enzyme and water reactions. As the figure shows, the
activation barriers are much larger in aqueous solution than in the
enzyme site, and the quantum corrections are larger in the enzyme than
in solution. Also note that the main reason for the difference in∆gq is
the reorganization energies and not the quantum corrections (for∆G0

) 0 the difference between the classical∆gq is given by the difference
in the corresponding values ofλ/4).
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